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Ground state and electron-magnon interaction in an 
itinerant ferromagnet: half-metallic ferromagnets? 

V Yu Irkhin and M I Katsnelson 
Institute of Metal Physics, 620219 Sverdlovsk, USSR 

Received 16 May 1989 

Abstract. Electron and spin Green functions of a Hubbard ferromagnet are calculated, both 
starting from the Stoner ground state and for a ferromagnet with Hubbard subbands. The 
temperature dependences of the spin-wave stiffness and damping, the magnetisation, the 
local moment on a site and the thermodynamic properties are investigated. The role of 
non-quasiparticle contributions, described by branch cuts of electron Green functions, is 
discussed. The non-quasiparticle (‘ferrospinon’) correction to the linear term in the specific 
heat is obtained. Experimental data on ‘half-metallic’ ferromagnets (in particular, spin 
polarisation and longitudinal nuclear relaxation rate) are analysed. 

1. Introduction 

It is common practice to describe the properties of itinerant electron ferromagnets using 
the Hubbard [l] model. Considerable developments have been made in the last 15 years 
within the framework of the spin-fluctuation theory [2]. The latter treats the contribution 
of thermal spin fluctuations (mainly paramagnons) to thermodynamic and magnetic 
properties, and, as a rule, the ground state is assumed to be described by the Stoner 
theory. Such an approach, based on the Fermi-liquid theory, seems to be adequate for 
weak itinerant ferromagnets such as ZrZnz and Sc31n. However, it is inapplicable 
for ferromagnets with strong electron correlations. In particular, the Mott-Hubbard 
splitting [l] may arise, which persists in the paramagnetic region, so that the Stoner 
picture is incorrect. For example, in the Hubbard-I approximation [l], the main effect 
of spin polarisation on the electron spectrum is the change in the widths of spin subbands 
rather than a constant spin splitting. Also, an explicit consideration of zero-point fluc- 
tuations is needed when determining the saturation magnetisation in a narrow-band 
Hubbard ferromagnet [3]. 

Another example of the influence of strong electron correlations is yielded by so- 
called ‘half-metallic’ ferromagnets (HFMS) where the Fermi level lies in the gap for one 
of the spin projections (in the non-degenerate Hubbard model these ferromagnets are 
described as saturated ferromagnets). Such a situation takes place, for example, in 
Heusler alloys MMnSb (M = Ni, CO, Pt) [4]. This case is interesting from the theoretical 
point of view since it is opposite to the case of weak itinerant ferromagnets. 
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Thus spin-fluctuation theories must be extended to include the case of strong electron 
correlations. The full realisation of this is a difficult problem. In the present paper we 
investigate in detail the effects of electron-magnon interaction on the magnetic and 
thermodynamic properties of itinerant ferromagnets, without restriction to the case of 
very weak ferromagnets. In particular, we demonstrate the important role of non- 
quasiparticle states which correspond to branch cuts of Green functions and are not 
taken into account in the Fermi liquid theory. In section 2 we calculate electron and spin 
Green functions both for the general case by using perturbation theory in the fluctuating 
part of the Coulomb interaction and, more accurately, for a HFM. Insection3 we consider 
the electron spectrum, damping, density of states and occupation numbers. In section 4 
we investigate the magnon damping and the temperature dependence of the spin-wave 
stiffness (in particular, the non-analytic T 2  In T contribution). In section 5 we find 
corrections to the magnetisation, and in section 6 to thermodynamic properties. In 
section 7 we derive the electron Green functions in the limit of strong electron cor- 
relations using the Hubbard many-electron representation [ 5 ] .  In section 8 we dem- 
onstrate the occurrence of non-quasiparticle contributions to the electron specific heat, 
contradicting the Fermi-liquid theory. In section 9 we discuss available experimental 
data on HFMS. 

2. Calculation of electron and spin Green functions 

We proceed with the Hubbard Hamiltonian 

H = 2 t k C k + o C k o  + Hint. 
k a  

The intrasite Coulomb interaction Hint may be represented in various forms [2] 

k 

Many of the results in the present paper hold also for the s-d( f) exchange model with 
the Hamiltonian 

H = 2 t k C k + o C k a  - I 2  sq * u a p C k + + q n C k p  + H d  (2.4) 
k a  4 

with I the s-d exchange parameter, S ,  the localised-spin operators, cr the Pauli matrices 
and Hd the Heisenberg Hamiltonian of the localised spin system. 

Consider the anticommutator retarded one-electron Green function [6] 

Gg(E)  = ( ( c k a / C k + o ) ) E  = [ E  - t k  - (2.5) 
The equation of motion for it has the form 

( E  - t k a ) G g ( E )  1 - u z  F & ( E )  
4 
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The symbol 6 means that the Hartree-Fock decouplings must be excluded when treating 
the corresponding Green function 

n t  + n l  = n  n - n I = 2(S'). 

In the Hartree-Fock approximation, 

withf(E) the Fermi function. The next equation of motion reads 

2. - U( ( S  I: S 4" ) + 2 4  S' )n k + q. -, ) G f (E) .  

Here we have carried out the simplest decouplings. The magnon frequency wq arises 
owing to spin dynamics. The simplest way to derive this term is to add to the Hamiltonian 
(2.1) an effective Heisenberg interaction H,. Spin dynamics may be taken into account 
more strictly if one uses the diagram technique [7,8] or passes to the representation of 
exact eigenfunctions of Hd [9]. Then we get 

with NB(w) the Bose function. Retaining only the spin-wave (magnon pole) contribution 
to the spectral density, 

-(l/.n) Im((S: = 2a(SZ)6(w - owq) (2.10) 

i.e. neglecting the Stoner excitations, we obtain both from (2.8) and from (2.9) 

(2.12) 

(2.13) 

where A = 2U(S') is the spin splitting. Equations (2.12) and (2.13) are valid for the s-d 
model (U-+ Z) to first order in the small parameter 1/2S [lo]. 
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For the saturated HFM at T = 0 (where n i  = 0, CJ ( E )  O ) ,  GL ( E )  may be cal- 
culated more accurately. Reducing the operator products to the 'normal' form where 
the c i  stay before the c; and neglecting terms proportional to n i , we have 

[ d ( S i C k - q T ) , H i n t ]  ( l - n k - q r )  c, C k + l T C k 2 ~ C k + k i - k ~ l  
k i k 2  

Then we obtain the integral equation 

( E - t k + q - W q ) F ~ q ( E ) = l / ( l - n k + q t  Gf! (E)-xF!$(E)). 
P 

Solving this we find that 

(2.14) 

(2.15) 

The result (2.15) (the 'parquet' approximation) is similar to the corresponding result 
for the s-d model [ll-131, which is exact in the limit of zero conduction electron 
concentration. For the Hubbard model it was derived by Edwards and Hertz [8]. (Note 
that the results of the Ward-identity approach [8] and of the parquet approximation are 
different for a non-saturated state.) 

Consider the commutator spin Green function 

G q ( W )  = ((S,'IS:,)), I m w > 0 .  (2.16) 

We obtain the following equations of motion: 

u G q ( w )  = 2(Sz) + 2 ( t k + q  - t k ) M k q ( W )  

M k q ( u )  = ((ck+r c k + q i  l s I q ) ) u ~  

(2.17) 

(2.18) 

k 

(U - t k + q  -t t k  - A ) M k q ( W )  = ( n k t  - n k + q l  ) [ I  - U G q ( @ ) ]  - L k q p ( u )  (2.19) 
P 

where we have introduced the 'irreducible' Green function 

L k q p  = 6 ( ( X k q p  I S I q ) ) ,  (2.20) 

X k q p  = Cir S J C k T q - p T  - +  C k t p i  S p + c k T q i  - 6 p q ( n k i  - n k + q :  IS,'. (2.21) 

G q ( 4  = [2(S') - Q q ( 4 / U 1 / b  - Q q ( 4  - q41 
Then we have 

(2.22) 

(2.23) 

When neglecting Il (i.e. the function L ) ,  equations (2.22) and (2.23) provide an alter- 
native form of the random-phase approximation (RPA). Unlike the standard RPA 
expression, equations (2.22) and (2.23) yield the magnon pole wq = Qq(0) explicitly. To 
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calculate II, we differentiate the function (2.20) with respect to the time on the right and 
obtain the contribution 

a[u((Xkqp/X;q'p'))u + a k k ' ( C : + q J  S i C k t q - p t  

+ cl+, .1 S i c k  t )I* (2.24) 

In the s-d model, such a contribution corresponds to the second order in 1/2S [14]. 
Using the spectral representation we get 

1 
( G ( c : + p J S i ) c k t > =  --J^dE.f(E)lmF$p(E) n 

= - U B ( ~  + 1 , k t , p ,  up ). (2.25) 

Neglecting Hint in the equation of motion for the Green function in (2.24), calculating 
the average ( [ X ,  X']) with the use of (2.11) and substituting (2.25), we obtain 

+ B(k  + p  1 , k  + 4 1 , p ,  wp - 0) - B(k  + p  1 ,kT , p ,  up )  

- B(k  + 4.1 9 k + 4 - p t ,p3 w p ) l .  (2.26) 

Now we carry out a more careful calculation for a saturated ferromagnet at T = 0. 
In that case we may neglect the second term in (2.21). Similar to (2.14) we derive 

(0 - t k + q - p  + tk - Up)Lkqp(O) = - n k + q - p  T 

i n k ?  G q ( 0 ) - n t : 2 1 k q ( w ) + C L k q ~ ( w , ) .  

Solving the system (2.17), (2.19) and (2.27) we obtain 

(2.27) 

(2.28) 

(2.29) 

The expression for the magnon frequency following from (2.28) coincides with the 
corresponding exact result in the s-d exchange model of a ferromagnetic semiconductor 
with I > 0 [13-151. Thus we see that the Hubbard model yields results similar to those 
given by the s-d model with I > 0. However, such a situation takes place only for band 
fillings that are not too large. Indeed, the almost-half-filled Hubbard model with U+ x 

is equivalent to the s-d model with S = a, I+ - cz and small conduction electron 
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concentration [16]. In that case, equation (2.28) is not quite satisfactory since it does not 
yield Nagaoka’s [17] result for the magnon frequency [13,15, 161. 

3. Electron spectrum and occupation numbers 

The real parts of equations (2.12) and (2.13) determine the corrections to one-electron 
energies. Here we treat only the magnon contribution (many-electron contributions are 
considered below). Taking into account the relation 

(S’) = So - C. N p  (3.1) 
P 

where So is the saturation magnetisation, we obtain (cf [lo]) 

6 E Z ( T )  = Re dxZ(tk,,) = (3 * 3) 

AZq = Ou(tk+q - f k ) / ( t k + q  - f k  -I- OA) O ( 4  + 0). (3.4) 

A&Nq cc (T /TJs”  
9 

with A & being the electron-magnon scattering amplitude: 

The one-electron damping is obtained by calculating higher-order contributions to 2 
similar to (2.26) (see also [lo]). We have 

YZ(T)  = n x  (AZq)’[Nq(l + Np) + nk+q-p(Np - Nq)1 
P 4  

x 6 ( t k  - t k + q - p  -k O’wq - O W p )  

k T ’1’ Il?kol <T (qku = tko  - E F )  

y g ( T )  cc k 3 T s J 2  ll?kol Iqko 1 > W 2 k  I klqku1T5/’ Il?kul $’ Iqko/ < W ? k *  

Expanding the Dyson equation (2.5) we obtain for the density of states 

(3.5) 

The third term in (3.6), arising from a branch of the self. nergy, describes th non- 
quasiparticle state contribution 6Nu(E).  The latter does not vanish in the energy region, 
corresponding to the subband with the opposite spin projection - O. At T = 0, as follows 
from (2.12) and (2.13), 6N,(E) varies sharply near EF and is non-zero above EF for 
B = 1 and below EF for o = t (cf [lo, 181). Remember that we consider only the 
contribution of the collective magnon mode to the spectral density (2.10). The 
contribution of the Stoner excitations (which is absent in the saturated case) gives, 
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generally speaking, a double-sided non-quasiparticle correction, but in any case 
6N,(EF, T = 0) = 0 [HI. 

Now we calculate the electron occupation numbers 

( c l T  c k t  ) = - ;Z d E  f ( E )  Im GJ  ( E )  = f ( t k  + Re XJ ( t k T  )) ‘I 

Retaining only magnon contributions up to T”’we get 

( ck+ ,cku>  = nk,(So + (S2))/2S, + nk,-,(So - (S2))/2S, (3.10) 

with ( S 2 )  defined by (3.1). Thus, despite the presence of the spin splitting A ,  electron 
occupation numbers have a strong T3I2 dependence rather than an exponential one. This 
dependence arises because of thermal magnon emission and absorption. The role of 
such processes in the temperature dependence of conduction electron spin polarisation 
P(T) of ferromagnetic semiconductors was discussed in [lo, 19, 201. Formally, the law 
P( T) ( S 2 )  is due to the strong temperature dependence of the Green function residues 
and to the occurrence of the non-quasiparticle states, owing to electron-magnon scat- 
tering, in ‘alien’ spin subbands. 

4. Spin-wave spectrum and damping 

Within the RPA (see (2.22) and (2.23)), we have for the magnon frequency 

uq = Qq(0) = C A Z q n k u  
k o  

wq-0 = D,,q,qp 

(4.1) 

For weak itinerant ferromagnets (A + E F ,  U )  we obtain from (4.2) 

i.e. the spin-wave stiffness constant D A (cf [21]). 
The magnon damping in the RPA reads 

Y$’ e Y q  (1) n U A @ q p  t (EF)p L ( E F ) o ( u q  - 

with e ( x )  the step function. Here w- is the threshold frequency which is determined by 
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the condition for entering into the Stoner continuum, U- = wqo where qo is the minimal 
(in k )  solution to the equation tk+q,,  I = t k T  = EF. For a weak itinerant ferromagnet we 
have 

In that case, the contribution of the spin Green function branch may be approximately 
considered to be that of a paramagnon pole at imaginary U .  The scale U- - Tk = 
T,?/EF is the borderline of two temperature regions: the contributions of spin waves 
dominate at T < T * ,  and those of paramagnons at T > T* [21]. Note that the same 
estimation U- - T,?/EF holds in the s-d model with indirect RKKY exchange where 

The damping (4.4) vanishes at small q ,  and for a saturated ferromagnet in the whole 
Brillouin zone. For such cases, the magnon damping is given by the imaginary part of 
(2.26): 

Integration in the case of an isotropic electron spectrum gives [14,22] 

with uO the lattice cell volume. 

longitudinal nuclear relaxation rate: 
The quantity (4.5) determines the contribution of two-magnon processes to the 

where U, 4 Tis the NMR frequency and A is the hyperfine interaction. The integration 
gives [23] 

The contribution (4.8) is particularly important in HFMS where the linear Korringa 
contribution 

(4.9) 

is absent (see section 9). 
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Consider the temperature dependence of the spin-wave stiffness. The usual T5'2 
correction may be obtained similar to the case of the s-d model [14] (see also [ 161). Here 
we treat the correction owing to the real part of II,(w) (2.26): 

For parabolic spectra tk = k2/2m,  wq = q 2  integration gives 

(4.10) 

(4.11) 

0 2  = D(kFT * k ~ l ) ~  P u ( ~ F )  = m u O  kFu/2n2. (4.12) 

The T2 In Tcorrection to D ,  as well as the T5I2 contribution to l /T1,  were firstly obtained 
in [ 161 for a saturated Hubbard ferromagnet with U + =. The result (4.11) holds for the 
s-d model (So+ S ) .  For w- e T U, we have 

6 D  = (muOT/12mSO)'(l/D)[p t (EF) - P 1 (EF)I2 1n(Tlw+). (4*13) 

For a weak itinerant ferromagnet one obtains 

6 D  = [u&k;T2/72n2(2Su)'D] ln(T/T*) ( T  e T*).  (4.14) 

The correction (4.11) dominates over corrections owing to the temperature dependence 
of the Fermi functions in (4.2) (cf [16]). 

5.  The magnetisation 

Consider the magnetisation (S'). We have 

n 
( S Z )  = - - (sI,s;) - ( a l t  n , l ) .  (5.1) 

2 q  

The first average involved in (5.1) is calculated via the spectral representation of the RPA 
Green function (2.22) and (2.23) (II- 0): 

(SI,S,+) = (SI&)pk + (SI,S,t),, ( 5 4  
(SI,S; = 2S"Nq (4  40) (5 .3)  

We have used in (5.4) the identity 

N B ( t k + q l  - t k t ) (nkT - n k + q l ) = n k + q J ( l  - n k t ) .  
The true Bloch spin-wave contribution is given by (3.1), since magnons are bosons, and 
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every magnon decreases the magnetisation by unity. Equations (5.1) and (5.3) do not 
agree with (3.1). The situation may be improved by allowing branch contributions. For 
example, taking into account in (5.4) (with nku+ (ck+,ck,)) the temperature dependence 
of occupation numbers (3.10) we obtain 

4 

where we have neglected the spin splitting 

1 
t- 

2SO 

- nk,T + n k , J  )] = - 2 N ,  ( 5 . 5 )  
4 

in the denominator. Considerable con- 
tributions to the Bloch term arise also from the branch cut corresponding to the damping 
(4.5) (cf the case of a saturated ferromagnet [16]). 

In the semi-phenomenological manner, it is suitable to introduce 'magnon' operators 
which satisfy on the average the Bose commutation relations b, = (2So)-l/*S,f , 
b4' = (2So)-"*SIq: 

1 
6(S')  = - (b,tb,) = - - 2 (SI,S,t). 

4 2So q 

We shall demonstrate in section 6 that such a way of calculating the electron correction 
to (S') is in agreement with that using the differentiation of the free energy. At T = 0 
(N(o) = -€(-a)),  integrating over w in (5.4) yields 

with Wbeing of the order of the band width. Such a contribution was found in the s-d( f) 
model [9]. At T < U - ,  neglecting the damping and using the parabolic isotropic spectra, 
we get 

For a weak ferromagnet we obtain from (5.8) a correction of the order of (TIT,)*, in 
agreement with the result of the self-consistent renormalisation (SCR) theory [2,24]. 

Unlike the s-d model, for the Hubbard model the interaction parameter U is not 
small, and the damping cannot be neglected. However, at low Tthis influences numerical 
factors only. On the contrary, at high T % w-  the integral is determined by the con- 
tribution of small w ,  q :  

(5.10) 

Thenweobtainfrom (5.1) (without introducingthefactor (2Si)- ' )  the T4/3c~ntribution 
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to the magnetisation (cf [2,21,24]). Thus our approach does not yield a unified picture 
of the T-dependence of (SL). On the other hand, use of the full SCR theory is not inevitable 
for obtaining the T 2  and T4'3 corrections themselves. 

6. Thermodynamic properties 

Consider the renormalisation of electronic specific heat owing to many-electron con- 
tributions. At T = 0, integration in (2.12) and (2.13) gives 

Then the inverse residue of the electron Green function, determining the effective-mass 
renormalisation, reads 
Z,'(kFu, E )  = 1 - ( d / d E )  Re Z'(kFo, E )  

= 1 + UA[p_,(EF)/(w+ - w-)] h l ( E  - o + ) / ( E  - co-) l .  (6.2) 
At low T =e w- we have for the coefficient of the linear term in the specific heat C( T )  
y U = y ( o )  U /Zu(kFu, EF) = (n2/3>pu(EF) 

x (1 + U A [ p - , ( E , ) / ( w +  - w - > l  ln(w+/=)}. (6.3) 
An analogous result for the s-d model was obtained in [9]. For weak itinerant ferro- 
magnets, 

and equation (6.3) describes the paramagnon enhancement of specific heat [2 ,7 ,  211, 
the numerical factor being inexact because longitudinal spin fluctuations and vortex 
corrections are neglected. On the other hand, our consideration is not restricted to the 
case of very weak ferromagnets. 

Let us calculate the corresponding contribution to the entropy S( T )  using the well 
known identity 

where p is the chemical potential. Substituting (3.6) into the relation 

ln(w+/w-) -2 In a 0 < a = UN(EF) - 1 e 1 

(an/aT)ll = W / W T  (6.4) 

n u  = j-; dEf(E)Nu(E) 

we obtain the contributions 

For parabolic spectra we have 
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with FeI( T )  the corresponding contribution to the free energy. If a 'direct' exchange 
interaction Hd is present (in particular, for the s-d model), the result (6.8) is definitely 
valid both at T < w- and at T > U- .  For weak itinerant ferromagnets at T > U - ,  it is 
important that for w > w- the approximation wq = Dq2 does not work, and it is suitable 
to use the estimation coq = U- = constant. Then we obtain from (6.6) 

6Fe,( T )  CC - T2N(EF)  ln(W/T) ( T  > w - )  (6.9) 
in qualitative agreement with [2,21]. 

The singular correction to the free energy may be also obtained by integrating over 
'effective' Heisenberg exchange parameters, as was done for the s-d model [9]. We have 
for T w- 

(6.10) 

Adding to the Hamiltonian the interaction 

wq + mq t k o  + t k o  - tuh 

using the identity 

( W ' ) / m h  = (aS/w,  

-hS' with external magnetic field so that 

+ h  

(6.12) 

and picking out the singular contribution, we obtain 

in agreement with (5.8). Note that the correction (6.13) cannot be obtained directly 
from (3.8) and (3.9) since the contributions of the last terms in these equations are 
cancelled by the terms with derivatives of Fermi functions. 

The spin-wave contribution to the free energy reads (cf [23]) 

6Fs, = -36(H),, 

(6.14) 

Using (6.8), (6.9) and (6.14) we can calculate and compare corrections to various 
physical quantities. This may be done most clearly for the case of a weak itinerant 
ferromagnet where 

D - A - w+ CY'/' T* - &312 T, cc 

For example, for elastic moduli C,k = a2F/(d U ,  d & )  ( U ,  are corresponding deformations), 
selecting the most singular (in a) contributions gives 

6(C,!)el cc -(T/E,)'(d[ln N ( E , ) l / d ~ , } ' a - ~  x - (T /Tc)2a- ' /2  ( T  < T " )  
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(6.15) 

(if d[ln N(EF)]/dui = 0 owing to symmetry, the singularity is weakened by one power of 
a).  At T = T*,  6(Cii)el,sw/Cji - - Tc/EF and the corresponding correction to the velocity 
of sound may be appreciable. 

Consider the temperature dependence of a local moment on a site 

( S ? )  = an - 4N2 N2 = (nit n i l )  (6.16) 

where the number of doubly occupied sites (doubles) may be determined using the 
Hellman-Feynman theorem N 2  = aF/d U.  We have from (6.8) and (6.14) 

6(S2)e1 cc - ( T / A l 2  ( T <  T * )  (6.17) 

S(S2) , ,  = -(9~o/32n~/~)(T/D)"~(aD/dU) cc - (T/A)5/2~-1'2 (6.18) 

so that at T <T* the electron contribution dominates over the spin-wave contribution 
(the latter was discussed in [25]).  At T > T * ,  the electron contribution to the free energy 
(6.9) is weakly U dependent, and the main contribution to ( S 2 )  comes from (5.10) and 
is positive: 

6(S2) = 6 2 (SI,S;),, (T /EF)4/3 .  (6.19) 
4 

Thus the amplitude of the local moment may have a minimum at T - CL)- - T * .  

7. Electron Green functions in a narrow-band Hubbard ferromagnet 

Here we consider the Hubbard model with strong electron correlations in the rep- 
resentation of Hubbard's many-electron operators [ 5 ] :  

X P ~  = licu>(ipl xyxXyE = 6,,XP" (7.1) 

where lia) ( a  = 0, U ,  2) are the states, corresponding to the empty, singly occupied and 
doubly occupied sites, respectively. We treat the case where U-, a, n < 1, so that the 
doubly occupied states are absent. The Hamiltonian (2.1) takes the form 

and describes the motion of current carriers-holes-in the system of local moments- 
singly occupied sites. 

First we calculate the electron Green function 

Gf (E)  = ((xio IX!?/k))E (7.4) 
within the l/z-expansion [ 3 ,  231 starting from the Hubbard-I approximation [l]. We 
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F$ ( E )  = ((x," I x!'k)) E .  (7.7) 
We neglect the contribution of longitudinal spin fluctuations which is not important at 
low temperatures. Carrying out the simplest decoupling in the equation of motion for 
the Green function (7.7) we obtain to first order in 1/z 

where, in the Hubbard-I approximation, 

(x%xP"> = (no + nu)f(&ku)* 
At low temperatures we derive (cf (3.3) and (3.4)) 

(7.9) 

(7.10) 

It is easy to prove that the magnon frequency (see [3]) is expressed, similar to (4.1), in 
terms of the electron-magnon scattering amplitude (7.10). 

For finite U ,  the calculations are carried out in a similar way by using the Bogoliubov 
U-U transformation to new operators corresponding to the Hubbard subbands [ 11 

E;,,* = i(tk + U T  &!) (7.11) 
To first order in 1/z one obtains [23] 

& Z  = [U* + t i  + 2Ut,(2n-, - 1)]"*. 

Ai: = (UUtk(fk+q - fk),/ 1 = 1 . 2  n ( E &  - Eiyq,)) 

t k  + U(2n-, - 1)). 
x 1 + (-1)i i ER 

(7.12) 

The spectrum (7.11) yields four subbands in the ferromagnetic region. One may 
expect that higher orders in 1/z modify the structure of the Green functions, so that 
some branches of the electron spectrum become ill defined and describe non-quasi- 
particle states (formally, some denominators are replaced by resolvents). For example, 
equations (2.5) and (2.15) give correctly the atomic limit (fk = 0), as the Hubbard-I 
approximation does [SI. 

An accurate calculation may be carried out in the case of small hole concentrations 
c = no (saturated ferromagnetic state [17]) and low temperatures. We have [16,26] 

so that, at T = 0, spin-up electrons propagate freely: 

(x!$x,'o) =f(&k) nk 6&k(T) cc T5'2. 
The situation is more interesting for the 'spin-down' Green function. Uskg the 

kinematical relations (7.1) we obtain 

G) ( E )  = Fiq(E) 
4 

(7.13) 
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( E  - &k-q)F)q(E) = Nq 4- nk-q 
- +x+-x+O + 2 ( ( ( & k - q + r  & k - q - p + r )  xi'x; - r  k - p + r - q  

P' 

+ ( E r  - & I + q)X"_: x;"4 -p  Xpf"Xkf0 1 x!; )) E .  

After decoupling, we derive the integral equation 

( E  - & k - q  - 6&k-q(T)  + W q ]  FFq(E) (nk-q + N q )  

(7.14) 

(7.15) 
' P  f 

where, to first order in 1/z, 

Solving (7.15) we obtain 

G )  ( E )  = { E  - & k  + [Gf' (E)]-'}-' 

N q  + n k - q  G p  ( E )  = 
E - & k - q  W q  

(7.17) 

(7.18) 

Note that (7.17) coincides with (2.5) and (2.15) for U+ =i f  we make the 'particle-hole' 
transformation. An expression, similar to (7.17), was derived in [27] using the diagram 
technique for X-operators. 

Equation (7.18), yielding G -  to lowest order in c, was obtained in [16,26]. Electron 
states described by (7.18) have a pure non-quasiparticle nature. A similar situation takes 
place for the full Green function (7.17) since at small c it has no poles below EF on the 
real axis. The corresponding distribution function, (X!&O) = c ,  is weakly k depen- 
dent. As follows from the general consideration of the electric field action on a many- 
electron system [28], states with such a property transfer no current. The non- 
quasiparticle states do not contribute to the density of states on EF at T = 0: 

nkPq6(E  - & k - q  + W q )  cc (EF - E)3'20(EF - E )  N J  ( E )  = (7.19) 
4 

for EF - E < W. At the same time, they give a contribution to the yT-term in the specific 
heat (see the next section). Similar properties (except the condition 6N(EF)  = 0) were 
postulated by Anderson for spinons (neutral fermion excitations in the resonating- 
valence-bond state without magnetic order) which, according to [29], may be described 
by a Green function with zero residue. In fact, we have demonstrated the existence of 
such excitations in a narrow-band Hubbard ferromagnet. 

With increasing c,  the Green function (7.18) acquires a real pole below E, (similar 
to that describing spin-polaron states in the s-d model [ll-13]), and the saturated 
ferromagnetic state is destroyed [8]. A conclusion about an antiferromagnetic instability 
was put forward in [27]. According to considerations in [3], ferromagnetism is preserved 
up to c = 1, but becomes unsaturated, the nature of spin-down states being changed, so 
that they are roughly described by the Hubbard-I approximation (7.6), i.e. they form 
narrowed quasiparticle bands. Near the instability, the effective mass of the quasi- 
particles that arise may be very large owing to the logarithmic divergence of the quantity 
GiJ ( E ) .  Such a mechanism was proposed in [30, 311 to explain the experimental data 
on the specific heat of CeSi,. 
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8. Non-quasiparticle contributions to specific heat: ferrospinons 

As follows from the above consideration, branch cuts of the electron Green functions, 
as well as their poles, play an important role in the thermodynamic and magnetic 
properties of conducting ferromagnets. The theory of a ferromagnetic Fermi liquid [32], 
like the usual Fermi-liquid theory [33], is restricted to an explicit consideration of pole 
(quasiparticle) contributions, non-quasiparticle contributions being assumed to result 
in renormalisations of N(EF) and Fermi-liquid parameters only. We shall demonstrate 
that non-quasiparticle contributions of quite a different type occur in the electronic 
specific heat of a conducting ferromagnet. 

Firstly, such contributions were found in the anisotropic s-d model of a (pseudo) 
ferromagnet [MI. Here we reproduce this result using equation (6.4). We have 

The first term in (8.1) yields the usual result 

S,(T) = C,(T) = (7C2/3)N,(E~)T. (8.2) 
The second term is due to the temperature dependence of the density of states. Sub- 
stituting (2.12) and (2.13) into the last term of (3.6) we derive 

(FortheHubbardmodel,I+ U >  O.)Atlow T,f(fk+q, -wq)+1andf(tktq+wq)+O. 
Thus non-quasiparticle states with U = 1 do not contribute to the yT-term since they 
are empty at T = 0. For U = t we get 

The result (8.5) may seem to be striking, since it is not clear why the general and 
apparently strict proof of equation (8.2) [33] is not valid for a ferromagnetic state. 
In fact, the presence of the energy spectrum splitting plays an essential role in our 
calculations. Also, temperature effects are taken into account in each thermodynamic 
potential diagram for one Green function only in [33]. At the same time, we have 
considered terms with products of Fermi functions at close energies. 

Selecting the non-quasiparticle contribution is most unambiguous for a saturated 
ferromagnet. In the s-d model with I < 0 (where U = 1 corresponds to the lower-spin 
subband, andp (EF) = 0), equation (8.5) yields the only contribution of minority states 
to the yT-term. In the s-d model with I > 0 and the Hubbard model ( p  1 (EF) = 0), non- 
quasiparticle contributions to the specific heat are absent. In the non-saturated case, the 
consideration is more difficult since the density of states below EF with a given spin 
projection contains contributions of both poles and branch cuts. 
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The situation in the Hubbard ferromagnet changes if we consider an almost-half- 
filled band with strong correlations. Then we have to introduce the ‘hole’ representation 
(or the ‘double’ representation for n > 1), and the Hubbard model has properties similar 
to those of the s-d model withZ < 0, unlike the ‘broad-band’ Hubbard model (see section 
2). The non-quasiparticle hole states (described by the creation operators X!;) are 
occupied, and in the saturated state case they are the only minority states contributing 
to y ,  since the Green function (7.4) with o = 1 has no poles below the hole Fermi level. 

First we consider the non-quasiparticle contribution to C using the Green function 
(7.8). We have 

d E  f ( E )  (- I I m  x 6G) ( E ) ) ]  

The factor (no + n-)-’ of the chemical potential ,U of holes is introduced to compensate 
violation of kinematical relations in the Hubbard-I approximation. Integration gives 

4(S’ ) (no  + n + )  & ; ( & k l  - P ) 2 ( E q t  - P I 2  d f ( E q t )  

( & k  1 - &q t I3  i- sc, = 2 
T ( n O  + n - )  kq 

which is reminiscent of equation (8.5). 
In the paramagnetic state, non-quasiparticle contributions to the Green function 

(7.8), containing Fermi functions, vanish to first order in 1/z. Formally, this is due to 
the structure of the Hubbard-I spectrum (7.11): at U-+ x ,  Ek CC t k ,  and the energy 
denominators are cancelled. At U # x ,  such contributions do occur in the paramagnetic 
state [23], so that the Hubbard splitting (which contradicts the Fermi-liquid theory) may 
result in non-quasiparticle terms in the specific heat, too. 

As we noted in section 7, states corresponding to branch cuts of electron Green 
functions possess properties similar to those of Anderson’s spinons. Now we consider 
an interesting case when the non-quasiparticle states (we call them ferrospinons) make 
the dominant contribution to specific heat. We use equation (7.17), expanding it in Go 1 . 
A non-zero contribution arises in the third order: 

(8.9) 

a 3(Ek - P )  ( & k  - E q ) 2 n q n p n r  =-(E aT kpqr ( E q  - & p  + wk-p - w k - q ) ( E q  - & r  + W k - r  - w k - q )  

Exact calculation of the integral (8.9) for concrete spectra & k ,  wq is very difficult. We 
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estimate (8.9) by putting oq = 0 and cutting divergences that arise at the mean magnon 
frequency: 

6 - D k F  k c4l3 ( k  - vO1l3, kF c113 , D cc c). 

Then we have 

6c; ( T )  12x2 T[p3(EF)/6] h(w/l;j) ( & k  - p)3. (8.10) 

y cc c-113 In c-1 y J  % Y r  p(EF) C1l3.  (8.11) 

Higher orders in CuJ do not change the result (8.11) since they contain extra factors of 
order c113 In c: 

k 

~ c ( { ) ( T )  1(1+ l ) l ; j - ' [p (~F)  ln l ; j1 '+1  ( & k  - p)'. (8.12) 

Thus we obtain an enhancement of the yT-term by a factor of the order of c - * / ~  ln(l/c). 
This enhancement is somewhat weaker than that found by the Gutzwiller method 
for the paramagnetic state: y / y o  x l / c  [34]. We see that the ferrospinon contribution 
dominates in the specific heat of a saturated ferromagnet at small c. 

k 

9. Discussion of experimental data on half-metallic ferromagnets: spin polarisation and 
longitudinal nuclear relaxation rate 

An important class of itinerant-electron ferromagnets is constituted by HMFS, where the 
Fermi level for minority spin states lies in the energy gap. To this class belong the Mn- 
based Heusler alloys NiMnSb, PtMnSb and CoMnSb [4, 35-37], and possibly UNiSn 
[38] and (according to electronic-structure calculation [39]) chromium dioxide CrOz 
which is widely used in magnetic recording. PtMnSb and UNiSn are promising from the 
technical point of view owing to their very high magneto-optical Kerr effect, which is 
intimately related to their electronic structure [35]. FeMnSb and Fe304 are half-metallic 
ferrimagnets [37]. In the ferrimagnet Mn4N, p 1 (EF) = 0 for the Mn(1) position and 
p ( E )  has a deep minimum at EF for the Mn(I1) position [40]. In Fe-Co alloys, which 
provide the basis of modern soft magnetic materials and are important in connection 
with the problem of obtaining largest saturation magnetisation, p J (EF) G p  (EF) [41], 
so that they are close to HMFS. 

The results obtained in the present paper demonstrate that the case of a HMF is 
very convenient for selecting non-quasiparticle contributions. Consider the available 
experimental data from this point of view. 

An interesting question is that of the spin polarisation of conduction electrons in a 
HMF. According to the naive Stoner picture, P(E,) = 100% at temperatures small in 
comparison with spin splitting, i.e. up to T = T,. Experimental data on spin-resolved 
threshold photoemission in the Mn-based Heusler alloys yield P(EF) = 50% [42]. Data 
on resistivity and Hall effect in the Heusler alloys [36] show that P(EF)  is strongly T 
dependent and behaves roughly as the magnetisation (S'). A conclusion was put forward 
in [36] that the latter fact indicates that Heusler alloys should be described by a strong- 
coupling model, As follows from our consideration of the electron-magnon interaction 
(section 3), the dependence P ( T )  cc (S') takes place for arbitrary coupling, both for the 
Hubbard model (where it is physically lucid since the current carriers form at the same 
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time magnetic moments) and for the s-d model (where the current carriers and magnetic 
moments belong to different energy bands) [lo,  201, and is related to the occurrence of 
minority non-quasiparticle states at EF and to a decrease in the residue of the majority 
Green function with increasing T. 

The question concerning depolarisation of conduction electrons in a HMF at T = 0 
is more complicated. Depolarisation may be found by photoemission measurements 
provided that occupied non-quasiparticle states are present near E,, which takes place 
in the s-dmodel with the antiferromagneticexchange interaction ( I  < 0) [lo]. (For1 > 0, 
the non-quasiparticle states are empty and may be observed by inverse photoemission 
measurements.) In the broad-band Hubbard model, at T = 0 the non-quasiparticle 
states lie above E, (section 3), so that depolarisation is absent. However, in the narrow- 
band limit (U+ =) the situation changes. Consider the almost-half-filled band with 
n > 1, c = N 2  = n - 1 Q 1. Then the current carriers are spinless doubles, and spin- 
up and spin-down electrons may be ‘pulled out’ from the occupied states with equal 
probability. On the other hand, empty states may be filled, according to the Pauli 
principle, only by spin-down electrons [26]. These conclusions are confirmed by the 
calculation of the electron Green functions (cf section 7): 

in agreement with the sum rules 

(x’_i,x:*) = 2 (X?iXk*> = ( X f 2 )  = c. 
k k 

Thus the spin polarisation is absent below EF except for the narrow layer of order 6, 
and experiments with a fairly low energy resolution would demonstrate a small spin 
polarisation. Realistic values of model parameters are intermediate, so that a deviation 
P( T = 0) from 100% is not surprising. 

Recently [43] a striking result has been obtained from the photoemission spectra of 
Cr02 :  no conduction electrons has been found at E,, in contradiction with metallic 
conductivity. In our opinion, the most natural explanation of this result is provided by 
final-state effects: for narrow bands, the photoelectron density of states may differ 
appreciably from that in the ground state because of the attraction of the electron to the 
hole that forms (see, e.g., the calculation for Ni [44]). The possible ‘polaronic’ nature 
of states at E,  is discussed in [43] as the reason for the above discrepancy. Such a 
possibility seems to be more exotic but is not excluded near the boundary of the stability 
of the half-metallic state (see section 7 ) .  

One of the direct methods for proving the half-metallic nature of a ferromagnet is 
investigation of the temperature dependence of the longitudinal nuclear relaxation rate 
l/Tl(T). For p ( E F )  = 0 ,  the linear Korringa contribution (4.9) is absent and the 
relaxation is due to two-magnon processes which give the T5i2  contribution (4.8). Note 
that the non-quasiparticle electron-magnon scattering states are essentially involved in 
y r ) ( w )  [13] and, therefore, in the contribution to l /T1 (4.8). 

Strong deviations from the Korringa law were found in the above-discussed com- 
pounds NiMnSb [45] and Mn4N [46]. For NiMnSb, which is a ferromagnet with T, = 
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750 K,  a dependence of the form l/T1 = U T  + bT3.R was obtained at T > 250 K. The 
modification of the exponent (3.8 instead of 2.5) may be due to the dependences (S‘) ( T ) ,  
D ( T )  in (4.8). The presence of a small linear term might be explained by errors of the 
band calculation [4] or by the influence of impurities which form minority states near 
EF. Thus, NMR experiments may give a further insight into the true nature of the ground 
state for such ferromagnets as Cr02 .  

We see that some non-quasiparticle contributions are most simply observable for 
HMFS. On the other hand, effects related to the Stoner continuum (e.g. the logarithmic 
enhancement of specific heat) take place for non-saturated ferromagnets only. 

In the light of the results in section 8, careful experimental investigations of specific 
heat of conducting ferromagnets with strong electron correlations (see, e.g., [47]) would 
be of great interest. 
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